Spoke 4: Adaptive AI
Nicola Gatti
(co-PI: Nicolò Cesa-Bianchi)
People

<table>
<thead>
<tr>
<th>Scientific Sector</th>
<th>Critical mass</th>
<th>RTDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer engineering</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Control engineering</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Bioengineering</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mathematical engineering</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Philosophy</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Electronic engineering</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Energy engineering</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Computer science</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scientific Sector</th>
<th>Critical mass</th>
<th>RTDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical physics</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Statistics</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Economic statistics</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bioengineering</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Market research and trends

Entrepreneurship (TRL 5 – 9)

Applied research (TRL 3 – 5)

Foundational research (TRL 1 – 3)
AI Seminars: 2023

- 22 seminars in 2023 (one seminar every 2 weeks)
- speakers: every researcher working in/with AI
- guest speakers: MIT, Cambridge, Pompeu Fabra
- open to: students, PhDs, industries
- >100 physical attendees per seminar
- online streaming on YouTube channel
Adaptive AI

Adaptivity The algorithm changes its behavior
Adaptive AI

Adaptivity The algorithm changes its behavior

Why? Several reasons
Adaptive AI

Adaptivity The algorithm changes its behavior

Why? Several reasons

agent level: the agent’s goals change or new information is collected
Adaptive AI

Adaptivity The algorithm changes its behavior

Why? Several reasons

Online learning
- The learner collects information during its execution
- Exploration and exploitation are simultaneous
- The learner adapts its decision to the acquired information dealing with uncertainty
- Applications: advertising, pricing

agent level: the agent’s goals change or new information is collected
Adaptive AI

Adaptivity The algorithm changes its behavior

Why? Several reasons

- **agent level**: the agent’s goals change or new information is collected
- **system level**: the performance of the system is degrading
Adaptivity The algorithm changes its behavior

Why? Several reasons

Adaptive maintenance
- The system functioning may degrade at operation time
- The algorithm aims at correcting the system change
- In other case, the system can use a different hardware
- Applications: manufacturing

agent level: the agent’s goals change or new information is collected

system level: the performance of the system is degrading
Adaptive AI

Adaptivity The algorithm changes its behavior

Why? Several reasons

agent level: the agent’s goals change or new information is collected

system level: the performance of the system is degrading

environment level: the environment changes
Adaptive AI

Adaptivity The algorithm changes its behavior

Why? Several reasons

Stochastic environment

Forecasting
- The environment can change
- New state prediction
- Applications: time-series, trading

agent level: the agent’s goals change or new information is collected

system level: the performance of the system is degrading

environment level: the environment changes
Adaptive AI

Adaptivity: The algorithm changes its behavior

Why?: Several reasons

- Agent level: The agent’s goals change or new information is collected
- System level: The performance of the system is degrading
- Environment level: The environment changes

Stochastic environment
Forecasting
- The environment can change
- New state prediction
- Applications: time-series, trading

Adversarial environment
Strategic interaction
- Multiple agents play simultaneously
- Optimal strategy
- Applications: real-time bidding, games

Applications:
- Time-series, trading
- Real-time bidding, games
Robust Adaptive AI

Adaptivity

\[\downarrow \]

Dynamics

\[\downarrow \]

Properties
Robust Adaptive AI

- Last-iterate
- On average
- With high probability
- Regret bounds
- Decentralized dynamics
- Distributed dynamics
- Centralized dynamics
- Communication
- Physics-based models
- Approximating dynamics
- Surrogate models
- Overparameterized
Robust Adaptive AI

Adaptivity

Dynamics

Properties

Convergence

Speed

Constraints

- Last-iterate
- On average
- With high probability
- Regret bounds
- Decentralized dynamics
- Distributed dynamics
- Centralized dynamics
- Communication
- Physics-based models
- Approximating dynamics
- Surrogate models
- Overparameterized

- Reinforcement learning
- Online learning
- Bandit algorithms
- Online convex optimization
- Game theory
- Multi-agent learning
- Deep learning
- Physics-based learning
- Change detection tests
- Computer vision
- Natural language processing
Robust Adaptive AI

- Adaptivity
 - Dynamics
 - Properties
 - Convergence
 - Speed
 - Constraints
 - Assumptions
Robust Adaptive AI

Adaptivity

Dynamics

Properties

Convergence
Speed
Constraints

Assumptions

Real-world requirements
Foundational questions
Foundational questions

Question 4.1 How to develop a unifying theory of single- and multi-agent adaptivity, where adaptivity at different levels (environment, system, agent) are harmonized?

WP4.1 (Roveri, Dedè, Mezard)
Adaptive algorithms in single-agent setting

WP4.2 (Amigoni, Schiaffonati, Prandini)
Adaptive algorithms in multi-agent setting
Foundational questions

Question 4.1 How to develop a unifying theory of single- and multi-agent adaptivity, where adaptivity at different levels (environment, system, agent) are harmonized?

Question 4.2 How to develop a machine learning theory to deal with complex non-convex, overparameterized problems?
Foundational questions

Question 4.1 How to develop a unifying theory of single- and multi-agent adaptivity, where adaptivity at different levels (environment, system, agent) are harmonized?

WP4.1 (Roveri, Dedè, Mezard)
Adaptive algorithms in single-agent setting

WP4.2 (Amigoni, Schiaffonati, Prandini)
Adaptive algorithms in multi-agent setting

WP4.3 (Zecchina, Cesa-Bianchi, Restelli)
Overparameterized problems

Question 4.2 How to develop a machine learning theory to deal with complex non-convex, overparameterized problems?

WP4.4 (Ceri, Paganoni, Buffa)
Personalized medicine

WP4.5 (Matera, Boracchi, Matteucci)
Multimodal interaction

Question 4.3 How adaptivity theory can lead to the development of concrete applications?
Foundational questions

Question 4.1 How to develop a unifying theory of single- and multi-agent adaptivity, where adaptivity at different levels (environment, system, agent) are harmonized?

Question 4.2 How to develop a machine learning theory to deal with complex non-convex, overparameterized problems?

Question 4.3 How adaptivity theory can lead to the development of concrete applications?